Configuration Guide¶
This page explains how to configure models and training using the current implementation.
For full, code-generated parameter details, use:
Import Paths¶
Use one of these import styles:
from worldflux.core.config import DreamerV3Config, TDMPC2Config
from worldflux.training.config import TrainingConfig
Model Configs¶
Use size presets, then override only what you need:
from worldflux import DreamerV3Config, TDMPC2Config
dreamer_cfg = DreamerV3Config.from_size(
"size50m",
obs_shape=(3, 64, 64),
action_dim=18,
)
tdmpc_cfg = TDMPC2Config.from_size(
"19m",
obs_shape=(39,),
action_dim=6,
)
Commonly Tuned DreamerV3 Fields¶
deter_dimstoch_discretestoch_classeshidden_dimcnn_depthkl_freekl_balance
Commonly Tuned TD-MPC2 Fields¶
latent_dimhidden_dimnum_hidden_layersnum_q_networkshorizonnum_samplesnum_elites
Factory Overrides¶
You can pass config overrides directly to create_world_model(...):
from worldflux import create_world_model
model = create_world_model(
"dreamerv3:size12m",
obs_shape=(3, 64, 64),
action_dim=4,
hidden_dim=320,
stoch_discrete=16,
stoch_classes=16,
)
If a field name is not supported by the target config class, model creation fails with a configuration error.
Training Configuration¶
from worldflux.training import TrainingConfig
train_cfg = TrainingConfig(
total_steps=100_000,
batch_size=16,
sequence_length=50,
learning_rate=3e-4,
grad_clip=100.0,
device="auto",
mixed_precision=False,
)
Useful fields beyond the basic loop:
weight_decaywarmup_stepslog_intervaleval_intervalsave_intervalgradient_accumulation_stepsoptimizerschedulerema_decay
Save and Load Configs¶
from worldflux import WorldModelConfig
from worldflux.training import TrainingConfig
# Model config from a saved model directory
model_cfg = WorldModelConfig.load("./my_model")
# Training config JSON round-trip
train_cfg = TrainingConfig(total_steps=10_000)
train_cfg.save("training_config.json")
loaded_train_cfg = TrainingConfig.load("training_config.json")
Environment Notes¶
CUDA_VISIBLE_DEVICES: use to select visible GPUs before running training.- Model
devicedefaults are implementation-defined by API: create_world_model(..., device="cpu")default is"cpu".TrainingConfig(device="auto")resolves to"cuda"if available, otherwise"cpu".