Skip to content

Protocol API (Autogenerated)

This page is generated from Python docstrings via mkdocstrings.

WorldModel

Bases: Module, ABC

Base class for all world models.

supports(capability)

Return True if the model advertises a capability.

require(capability, message=None)

Raise if the model does not support a capability.

validate_batch_contract(batch)

Validate batch keys/layouts against model I/O contract.

validate_state_contract(state)

Validate state tensor keys/shapes against model I/O contract.

io_contract()

Return runtime I/O contract.

Subclasses should override this when they have richer modality/state specs. The default keeps backward compatibility for existing models.

encode(obs, deterministic=False)

Encode observation to latent state.

transition(state, action, conditions=None, deterministic=False)

Predict next state (prior/imagination).

async_encode(obs, deterministic=False) async

Asynchronous non-blocking variant of encode.

async_transition(state, action, conditions=None, deterministic=False) async

Asynchronous non-blocking variant of transition.

async_decode(state, conditions=None) async

Asynchronous non-blocking variant of decode.

update(state, action, obs, conditions=None)

Update state with observation (posterior).

decode(state, conditions=None)

Decode latent state to predictions.

plan_step(state, action, conditions=None, deterministic=False)

Optional planner hook. Default delegates to transition().

sample_step(state, action=None, conditions=None, deterministic=False)

Optional sampler hook for generative families.

If an action is provided, transition first then decode. Otherwise decode state.

teacher_forcing_step(state, action, obs, conditions=None)

Optional training hook. Default delegates to update().

rollout(initial_state, action_sequence, conditions=None, deterministic=False, mode='autoregressive')

Default rollout implementation using transition + decode.

async_rollout(initial_state, action_sequence, conditions=None, deterministic=False, mode='autoregressive') async

Asynchronous non-blocking variant of rollout.

loss(batch) abstractmethod

Compute training loss.

save_pretrained(path)

Save model weights and config using a unified directory layout.

contract_fingerprint()

Return a stable fingerprint for this model's declared IO contract.

ActionPayload

Polymorphic action container that supports multiple control modalities.

validate(*, api_version='v0.2')

Validate payload consistency.

ConditionPayload

Optional side-conditions for conditional world modeling.

validate(*, strict=False, allowed_extra_keys=None, extra_schema=None, api_version='v0.2')

Validate condition extras naming and optional allow-list contract.

WorldModelInput

Unified model input object.

ModelOutput

Standardized model output container.

preds property writable

Backward-compatible alias for predictions.

validate()

Validate prediction tensor shapes and batch consistency.

items()

Compatibility helper for iterating over predictions.

LossOutput

Standardized loss container.

items()

Compatibility helper for iterating over losses.

State

Generic state container (tensor dictionary + metadata).

validate()

Validate state tensor shapes and batch consistency.

serialize(version='v1', format='binary')

Serialize state with a versioned binary envelope.

Binary envelope layout

magic (4 bytes), version id (1 byte), metadata length (4 bytes), metadata JSON bytes, then raw tensor bytes.

deserialize(payload) classmethod

Deserialize state from State.serialize(...) payload.

to_shared_memory(*, namespace='worldflux-state', allow_copy_from_cuda=False)

Create shared-memory descriptor for zero-copy CPU state exchange.

Notes
  • CPU contiguous tensors retain zero-copy semantics when re-attached.
  • CUDA tensors require allow_copy_from_cuda=True and are copied to CPU.

from_shared_memory(descriptor, *, copy=False) classmethod

Attach a state from shared-memory descriptor created by to_shared_memory.

close_shared_memory(*, unlink=False)

Close attached shared-memory handles, optionally unlinking segments.

Unlink shared-memory segments created by to_shared_memory.

Trajectory

Imagination rollout trajectory in latent space.

Attributes:

Name Type Description
states list[State]

List of latent states [T+1] (initial + T steps)

actions Tensor

Action tensor [T, batch, action_dim]

rewards Tensor | None

Predicted rewards [T, batch] (optional)

values Tensor | None

Predicted values [T+1, batch] (optional)

continues Tensor | None

Continue probabilities [T, batch] (optional)

The trajectory maintains the invariant that len(states) == actions.shape[0] + 1, representing the initial state plus one state per action taken.

horizon property

Prediction horizon (number of actions).

to_tensor(key)

Stack a specific state tensor key across time [T+1, batch, ...].