Skip to content

Factory API (Autogenerated)

This page is generated from Python docstrings via mkdocstrings.

create_world_model

Create a world model with a simple, unified interface.

This is the recommended way to create world models. It provides a clean, LangChain-style API that abstracts away implementation details.

Parameters:

Name Type Description Default
model str

Model identifier. Can be: - Full preset: "dreamerv3:size12m", "tdmpc2:5m" - Alias: "dreamer", "tdmpc", "dreamer-large" - Local path: "./my_trained_model"

required
obs_shape tuple[int, ...] | None

Observation shape. Default depends on model type: - DreamerV3: (3, 64, 64) for images - TD-MPC2: Must be specified for vector observations

None
action_dim int | None

Action dimension. Default: 6

None
device str

Device to place model on. Default: "cpu"

'cpu'
component_overrides dict[str, object] | None

Optional component-slot overrides. Values may be: - Registered component id (str) - Component class - Pre-built component instance

None
**kwargs Any

Additional model-specific configuration

{}

Returns:

Name Type Description
WorldModel WorldModel

Configured world model instance

Examples:

Basic usage

model = create_world_model("dreamerv3:size12m")

With custom observation space

model = create_world_model( "tdmpc2:5m", obs_shape=(39,), action_dim=4, )

Using aliases

model = create_world_model("dreamer-large") # dreamerv3:size200m

Load trained model

model = create_world_model("./checkpoints/my_model")

list_models

List all available world model presets.

Parameters:

Name Type Description Default
verbose bool

If True, return detailed model information

False
maturity str | None

Optional maturity filter ("reference", "experimental", "skeleton")

None

Returns:

Type Description
list[str] | dict[str, dict[str, Any]]

List of model names, or dict with detailed info if verbose=True

Examples:

Simple list

>>> list_models()
['dreamerv3:size12m', 'dreamerv3:size25m', ..., 'tdmpc2:317m']

With details

>>> list_models(verbose=True)
{
    'dreamerv3:size12m': {
        'description': 'DreamerV3 12M params - Good for simple environments',
        'params': '~12M',
        ...
    },
    ...
}

get_model_info

Get detailed information about a specific model.

Parameters:

Name Type Description Default
model str

Model identifier or alias

required

Returns:

Type Description
dict[str, Any]

Dictionary with model information

Raises:

Type Description
ValueError

If model is not found

get_config

Get a configuration object without creating the model.

Useful for inspecting or modifying configuration before model creation.

Parameters:

Name Type Description Default
model str

Model identifier or alias

required
obs_shape tuple[int, ...] | None

Override observation shape

None
action_dim int | None

Override action dimension

None
**kwargs Any

Additional configuration overrides

{}

Returns:

Name Type Description
WorldModelConfig WorldModelConfig

Configuration object

Examples:

Get config and inspect

config = get_config("dreamerv3:size12m") print(config.deter_dim) # 2048

Modify and create

config = get_config("tdmpc2:5m", obs_shape=(100,)) config.num_q_networks = 10 # Custom Q ensemble size model = DreamerV3WorldModel(config) # or use registry